ГастроПортал Гастроэнтерологический портал России

Proc Natl Acad Sci U S A

Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis.


de Vree JM. Jacquemin E. Sturm E. Cresteil D. Bosma PJ. Aten J. Deleuze JF. Desrochers M. Burdelski M. Bernard O. Oude Elferink RP. Hadchouel M.
Department of Gastroenterology and Liver Diseases, Academic Medical Center F-0-116, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
Class III multidrug resistance (MDR) P-glycoproteins (P-gp), mdr2 in mice and MDR3 in man, mediate the translocation of phosphatidylcholine across the canalicular membrane of the hepatocyte. Mice with a disrupted mdr2 gene completely lack biliary phospholipid excretion and develop progressive liver disease, characterized histologically by portal inflammation, proliferation of the bile duct epithelium, and fibrosis. This disease phenotype is very similar to a subtype of progressive familial intrahepatic cholestasis, hallmarked by a high serum gamma-glutamyltransferase (gamma-GT) activity. We report immunohistochemistry for MDR3 P-gp, reverse transcription-coupled PCR sequence analysis, and genomic DNA analysis of MDR3 from two progressive familial intrahepatic cholestasis patients with high serum gamma-GT. Canalicular staining for MDR3 P-gp was negative in liver tissue of both patients. Reverse transcription-coupled PCR sequencing of the first patient's sequence demonstrated a homozygous 7-bp deletion, starting at codon 132, which results in a frameshift and introduces a stop codon 29 codons downstream. The second patient is homozygous for a nonsense mutation in codon 957 (C --> T) that introduces a stop codon (TGA). Our results demonstrate that mutations in the human MDR3 gene lead to progressive familial intrahepatic cholestasis with high serum gamma-GT. The histopathological picture in these patients is very similar to that in the corresponding mdr2(-/-) mouse, in which mdr2 P-gp deficiency induces complete absence of phospholipid in bile.

Mechanisms underlying nonsteroidal antiinflammatory drug-mediated apoptosis.


Chan TA. Morin PJ. Vogelstein B. Kinzler KW.
Oncology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
Nonsteroidal antiinflammatory drugs (NSAIDs) can inhibit colorectal tumorigenesis and are among the few agents known to be useful for the chemoprevention of neoplasia. Here, we show that the tumor suppressive effects of NSAIDs are not likely to be related to a reduction in prostaglandins but rather are due to the elevation of the prostaglandin precursor arachidonic acid (AA). NSAID treatment of colon tumor cells results in a dramatic increase in AA that in turn stimulates the conversion of sphingomyelin to ceramide, a known mediator of apoptosis. These results have significant implications for understanding and improving colon cancer chemoprevention.

Constitutive achlorhydria in mucolipidosis type IV.


Schiffmann R. Dwyer NK. Lubensky IA. Tsokos M. Sutliff VE. Latimer JS. Frei KP. Brady RO. Barton NW. Blanchette-Mackie EJ. Goldin E.
Developmental and Metabolic Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA. raffis@helix.nih.gov
Mucolipidosis type IV is an autosomal recessive lysosomal storage disease of unknown etiology that causes severe neurological and ophthalmological abnormalities. In an attempt to obtain insight into the nature of the metabolic abnormality in this disorder, we prospectively evaluated 15 consecutive patients, aged 2 to 23 years, over a period of 22 months. The finding of iron deficiency in some of the patients led us to the discovery that all patients but one had markedly elevated blood gastrin levels. None had vitamin B12 deficiency. Gastroscopy in three patients showed normal gross appearance of the mucosa in two patients, 4 and 7 years old, and mucosal atrophy in a 22-year-old. Parietal cells were present in normal numbers and contained large cytoplasmic inclusions that were confirmed immunohistochemically to be lysosomal in nature. Other gastric epithelial cells appeared normal. Parietal cells contained very few tubulovesicular membranes, suggesting cellular activation, whereas apical canaliculi appeared relatively nonactivated. Both subunits of the parietal cell H+/K+-ATPase were present, and both partially colocalized with f-actin at the apical membrane. We conclude that patients with mucolipidosis type IV are constitutively achlorhydric and have partially activated parietal cells. We hypothesize that the defective protein in this disease is closely associated with the final stages of parietal cell activation and is critical for a specific type of cellular vacuolar trafficking between the cytoplasm and the apical membrane domain.

Mapping a disease locus by allelic association.


Collins A. Morton NE.
Human Genetics, University of Southampton, Level G, Princess Anne Hospital, Coxford Road, Southampton SO16 5YA, United Kingdom. arc@soton.ac.uk
Allelic association provides a means to map disease genes that, in a dense map of polymorphic markers, has considerably higher resolution than linkage methods. We describe here a composite likelihood estimate of location for a disease gene against a high-resolution marker map by using allele frequencies at linked loci. Data may be family-based, as in the transmission disequilibrium test, or from a case-control study. chi2 tests, logarithm of odds, standard errors, and information weights are provided. The method is illustrated by analysis of published cystic fibrosis haplotypes, in which DeltaF508 is more accurately localized than by other association studies. This differs from current approaches by adopting a more general Malecot model for isolation by distance, where distance here is between marker and disease locus, allowance for errors in the map and model, and freedom from assumptions about demography, systematic pressures, and the ratio of physical to genetic distance. When these assumptions are introduced the number of generations since the original mutation may be estimated, but this is not required to determine location and its standard error, so that evidence from allelic association may be efficiently combined with linkage evidence to identify a region for positional cloning of a disease gene.

Targeted deletion of Smad4 shows it is required for transforming growth factor beta and activin signaling in colorectal cancer cells.


Zhou S. Buckhaults P. Zawel L. Bunz F. Riggins G. Dai JL. Kern SE. Kinzler KW. Vogelstein B.
The Howard Hughes Medical Institute at Johns Hopkins University, Baltimore, MD 21231, USA.
Smad4 (DPC4) is a candidate tumor suppressor gene that has been hypothesized to be critical for transmitting signals from transforming growth factor (TGF) beta and related ligands. To directly test this hypothesis, the Smad4 gene was deleted through homologous recombination in human colorectal cancer cells. This deletion abrogated signaling from TGF-beta, as well as from the TGF-beta family member activin. These results provide unequivocal evidence that mutational inactivation of Smad4 causes TGF-beta unresponsiveness and provide a basis for understanding the physiologic role of this gene in tumorigenesis.

Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator.


Schwiebert EM. Morales MM. Devidas S. Egan ME. Guggino WB.
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
CFTR is a cyclic AMP (cAMP)-activated chloride (Cl-) channel and a regulator of outwardly rectifying Cl- channels (ORCCs) in airway epithelia. CFTR regulates ORCCs by facilitating the release of ATP out of cells. Once released from cells, ATP stimulates ORCCs by means of a purinergic receptor. To define the domains of CFTR important for Cl- channel function and/or ORCC regulator function, mutant CFTRs with N- and C-terminal truncations and selected individual amino acid substitutions were created and studied by transfection into a line of human airway epithelial cells from a cystic fibrosis patient (IB3-1) or by injection of in vitro transcribed complementary RNAs (cRNAs) into Xenopus oocytes. Two-electrode voltage clamp recordings, 36Cl- efflux assays, and whole cell patch-clamp recordings were used to assay for the Cl- channel function of CFTR and for its ability to regulate ORCCs. The data showed that the first transmembrane domain (TMD-1) of CFTR, especially predicted alpha-helices 5 and 6, forms an essential part of the Cl- channel pore, whereas the first nucleotide-binding and regulatory domains (NBD1/R domain) are essential for its ability to regulate ORCCs. Finally, the data show that the ability of CFTR to function as a Cl- channel and a conductance regulator are not mutually exclusive; one function could be eliminated while the other was preserved.

Abnormality in catalase import into peroxisomes leads to severe neurological disorder.


Year 1998
Sheikh FG. Pahan K. Khan M. Barbosa E. Singh I.
Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA.
Peroxisomal disorders are lethal inherited diseases caused by either defects in peroxisome assembly or dysfunction of single or multiple enzymatic function(s). The peroxisomal matrix proteins are targeted to peroxisomes via the interaction of peroxisomal targeting signal sequences 1 and 2 (PTS1 or PTS2) with their respective cytosolic receptors. We have studied human skin fibroblast cell lines that have multiple peroxisomal dysfunctions with normal packaging of PTS1 and PTS2 signal-containing proteins but lack catalase in peroxisomes. To understand the defect in targeting of catalase to peroxisomes and the loss of multiple enzyme activities, we transfected the mutant cells with normal catalase modified to contain either PTS1 or PTS2 signal sequence. We demonstrate the integrity of these pathways by targeting catalase into peroxisomes via PTS1 or PTS2 pathways. Furthermore, restoration of peroxisomal functions by targeting catalase-SKL protein (a catalase fused to the PTS1 sequence) to peroxisomes indicates that loss of multiple functions may be due to their inactivation by H2O2 or other oxygen species in these catalase-negative peroxisomes. In addition to enzyme activities, targeting of catalase-SKL chimera to peroxisomes also corrected the in situ levels of fatty acids and plasmalogens in these mutant cell lines. In normal fibroblasts treated with aminotriazole to inhibit catalase, we found that peroxisomal functions were inhibited to the level found in mutant cells, an observation that supports the conclusion that multiple peroxisomal enzyme defects in these patients are caused by H2O2 toxicity in catalase-negative peroxisomes. Moreover, targeting of catalase to peroxisomes via PTS1 and PTS2 pathways in these mutant cell lines suggests that there is another pathway for catalase import into peroxisomes and that an abnormality in this pathway manifests as a peroxisomal disease.

Intestinal trefoil factor controls the expression of the adenomatous polyposis coli-catenin and the E-cadherin-catenin complexes in human colon carcinoma cells.


Year 1998
Efstathiou JA. Noda M. Rowan A. Dixon C. Chinery R. Jawhari A. Hattori T. Wright NA. Bodmer WF. Pignatelli M.
Division of Investigative Science, Imperial College of Science, Technology and Medicine, Hammersmith Campus, Du Cane Road, London W12 ONN, United Kingdom.
Intestinal trefoil factor 3 (TFF3) is a member of the trefoil family of peptides, small molecules constitutively expressed in epithelial tissues, including the gastrointestinal tract. TFF3 has been shown to promote migration of intestinal epithelial cells in vitro and to enhance mucosal healing and epithelial restitution in vivo. In this study, we evaluated the effect of recombinant TFF3 (rTFF3) stimulation on the expression and cellular localization of the epithelial (E)-cadherin-catenin complex, a prime mediator of Ca2+ dependent cell-cell adhesion, and the adenomatous polyposis coli (APC)-catenin complex in HT29, HCT116, and SW480 colorectal carcinoma cell lines. Stimulation by rTFF3 (10(-9) M and 10(-8) M) for 20-24 hr led to cell detachment and to a reduction in intercellular adhesion in HT29 and HCT116 cells. In both cell lines, E-cadherin expression was down-regulated. The expression of APC, alpha-catenin and beta-catenin also was decreased in HT29 cells, with a translocation of APC into the nucleus. No change in either cell adhesion or in the expression of E-cadherin, the catenins, and APC was detected in SW480 cells. In addition, TFF3 induced DNA fragmentation and morphological changes characteristic of apoptosis in HT29. Tyrphostin, a competitive inhibitor of protein tyrosine kinases, inhibited the effects of TFF3. Our results indicate that by perturbing the complexes between E-cadherin, beta-catenin, and associated proteins, TFF3 may modulate epithelial cell adhesion, migration, and survival.

Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of vascular endothelial growth factor/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells.


Year 1998
Okada F. Rak JW. Croix BS. Lieubeau B. Kaya M. Roncari L. Shirasawa S. Sasazuki T. Kerbel RS.
Division of Cancer Biology Research, Sunnybrook Health Science Centre, Toronto, Ontario, M4N 3M5, Canada.
Targeted disruption of the single mutant K-ras allele in two human colorectal carcinoma cell lines (DLD-1 and HCT-116) leads to loss of tumorigenic competence in nude mice with retention of ability to grow indefinitely in monolayer culture. Because expression of the mutant K-ras oncogene in these cell lines is associated with marked up-regulation of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF), we sought to determine whether this potent angiogenesis inducer plays a role in K-ras-dependent tumorigenic competence. Transfection of a VEGF121 antisense expression vector into DLD-1 and HCT-116 cells resulted in suppression of VEGF/VPF production by a factor of 3- to 4-fold. The VEGF/VPF-deficient sublines, unlike the parental population or vector controls, were profoundly suppressed in their ability to form tumors in nude mice for as long as 6 months after cell injection. In contrast, in vitro growth of these sublines was unaffected, thus demonstrating the critical importance of VEGF/VPF as an angiogenic factor for HCT-116 and DLD-1 cells. Transfection of a full-length VEGF121 cDNA into two nontumorigenic mutant K-ras knockout sublines resulted in a weak but detectable restoration of tumorigenic ability in vivo in a subset of the transfectants, with no consistent change in growth properties in vitro. The findings indicate that mutant ras-oncogene-dependent VEGF/VPF expression is necessary, but not sufficient, for progressive tumor growth in vivo and highlight the relative contribution of oncogenes, such as mutant K-ras, to the process of tumor angiogenesis.

Analysis of ClC-2 channels as an alternative pathway for chloride conduction in cystic fibrosis airway cells.


Year 1998
Schwiebert EM. Cid-Soto LP. Stafford D. Carter M. Blaisdell CJ. Zeitlin PL. Guggino WB. Cutting GR.
Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Cystic fibrosis (CF) is a lethal inherited disease that results from abnormal chloride conduction in epithelial tissues. ClC-2 chloride channels are expressed in epithelia affected by CF and may provide a key "alternative" target for pharmacotherapy of this disease. To explore this possibility, the expression level of ClC-2 channels was genetically manipulated in airway epithelial cells derived from a cystic fibrosis patient (IB3-1). Whole-cell patch-clamp analysis of cells overexpressing ClC-2 identified hyperpolarization-activated Cl- currents (HACCs) that displayed time- and voltage-dependent activation, and an inwardly rectifying steady-state current-voltage relationship. Reduction of extracellular pH to 5.0 caused significant increases in HACCs in overexpressing cells, and the appearance of robust currents in parental IB3-1 cells. IB3-1 cells stably transfected with the antisense ClC-2 cDNA showed reduced expression of ClC-2 compared with parental cells by Western blotting, and a significant reduction in the magnitude of pH-dependent HACCs. To determine whether changes in extracellular pH alone could initiate chloride transport via ClC-2 channels, we performed 36Cl- efflux studies on overexpressing cells and cells with endogenous expression of ClC-2. Acidic extracellular pH increased 36Cl- efflux rates in both cell types, although the ClC-2 overexpressing cells had significantly greater chloride conduction and a longer duration of efflux than the parental cells. Compounds that exploit the pH mechanism of activating endogenous ClC-2 channels may provide a pharmacologic option for increasing chloride conductance in the airways of CF patients.

Black holes and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli.


Year 1998
Maurelli AT. Fernandez RE. Bloch CA. Rode CK. Fasano A.
Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, MD 20814-4799, USA. maurelli@usuhsb.usuhs.mil
Plasmids, bacteriophages, and pathogenicity islands are genomic additions that contribute to the evolution of bacterial pathogens. For example, Shigella spp., the causative agents of bacillary dysentery, differ from the closely related commensal Escherichia coli in the presence of a plasmid in Shigella that encodes virulence functions. However, pathogenic bacteria also may lack properties that are characteristic of nonpathogens. Lysine decarboxylase (LDC) activity is present in approximately 90% of E. coli strains but is uniformly absent in Shigella strains. When the gene for LDC, cadA, was introduced into Shigella flexneri 2a, virulence became attenuated, and enterotoxin activity was inhibited greatly. The enterotoxin inhibitor was identified as cadaverine, a product of the reaction catalyzed by LDC. Comparison of the S. flexneri 2a and laboratory E. coli K-12 genomes in the region of cadA revealed a large deletion in Shigella. Representative strains of Shigella spp. and enteroinvasive E. coli displayed similar deletions of cadA. Our results suggest that, as Shigella spp. evolved from E. coli to become pathogens, they not only acquired virulence genes on a plasmid but also shed genes via deletions. The formation of these "black holes," deletions of genes that are detrimental to a pathogenic lifestyle, provides an evolutionary pathway that enables a pathogen to enhance virulence. Furthermore, the demonstration that cadaverine can inhibit enterotoxin activity may lead to more general models about toxin activity or entry into cells and suggests an avenue for antitoxin therapy. Thus, understanding the role of black holes in pathogen evolution may yield clues to new treatments of infectious diseases.

Human PEX1 cloned by functional complementation on a CHO cell mutant is responsible for peroxisome-deficient Zellweger syndrome of complementation group I.


Year 1998
Tamura S. Okumoto K. Toyama R. Shimozawa N. Tsukamoto T. Suzuki Y. Osumi T. Kondo N. Fujiki Y.
Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812-81, Japan.
The peroxisome biogenesis disorders (PBDs), including Zellweger syndrome (ZS) and neonatal adrenoleukodystrophy (NALD), are autosomal recessive diseases caused by defects in peroxisome assembly, for which at least 10 complementation groups have been reported. We have isolated a human PEX1 cDNA (HsPEX1) by functional complementation of peroxisome deficiency of a mutant Chinese hamster ovary (CHO) cell line, ZP107, transformed with peroxisome targeting signal type 1-tagged "enhanced" green fluorescent protein. This cDNA encodes a hydrophilic protein (Pex1p) comprising 1,283 amino acids, with high homology to the AAA-type ATPase family. A stable transformant of ZP107 with HsPEX1 was morphologically and biochemically restored for peroxisome biogenesis. HsPEX1 expression restored peroxisomal protein import in fibroblasts from three patients with ZS and NALD of complementation group I (CG-I), which is the highest-incidence PBD. A CG-I ZS patient (PBDE-04) possessed compound heterozygous, inactivating mutations: a missense point mutation resulting in Leu-664 --> Pro and a deletion of the sequence from Gly-634 to His-690 presumably caused by missplicing (splice site mutation). Both PBDE-04 PEX1 cDNAs were defective in peroxisome-restoring activity when expressed in the patient fibroblasts as well as in ZP107 cells. These results demonstrate that PEX1 is the causative gene for CG-I peroxisomal disorders.

Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment.


Year 1998
Hobbs SK. Monsky WL. Yuan F. Roberts WG. Griffith L. Torchilin VP. Jain RK.
Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom St., Cox-7, Boston, MA 02114, USA.
Novel anti-neoplastic agents such as gene targeting vectors and encapsulated carriers are quite large (approximately 100-300 nm in diameter). An understanding of the functional size and physiological regulation of transvascular pathways is necessary to optimize delivery of these agents. Here we analyze the functional limits of transvascular transport and its modulation by the microenvironment. One human and five murine tumors including mammary and colorectal carcinomas, hepatoma, glioma, and sarcoma were implanted in the dorsal skin-fold chamber or cranial window, and the pore cutoff size, a functional measure of transvascular gap size, was determined. The microenvironment was modulated: (i) spatially, by growing tumors in subcutaneous or cranial locations and (ii) temporally, by inducing vascular regression in hormone-dependent tumors. Tumors grown subcutaneously exhibited a characteristic pore cutoff size ranging from 200 nm to 1.2 microm. This pore cutoff size was reduced in tumors grown in the cranium or in regressing tumors after hormone withdrawal. Vessels induced in basic fibroblast growth factor-containing gels had a pore cutoff size of 200 nm. Albumin permeability was independent of pore cutoff size. These results have three major implications for the delivery of therapeutic agents: (i) delivery may be less efficient in cranial tumors than in subcutaneous tumors, (ii) delivery may be reduced during tumor regression induced by hormonal ablation, and (iii) permeability to a molecule is independent of pore cutoff size as long as the diameter of the molecule is much less than the pore diameter.

Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease.


Year 1998
Herbarth B. Pingault V. Bondurand N. Kuhlbrodt K. Hermans-Borgmeyer I. Puliti A. Lemort N. Goossens M. Wegner M.
Zentrum fur Molekulare Neurobiologie, Universitat Hamburg, 20246 Hamburg, Germany.
The spontaneous mouse mutant Dominant megacolon (Dom) is a valuable model for the study of human congenital megacolon (Hirschsprung disease). Here we report that the defect in the Dom mouse is caused by mutation of the gene encoding the Sry-related transcription factor Sox10. This assignment is based on (i) colocalization of the Sox10 gene with the Dom mutation on chromosome 15; (ii) altered Sox10 expression in the gut and in neural-crest derived structures of cranial ganglia of Dom mice; (iii) presence of a frameshift in the Sox10 coding region, and (iv) functional inactivation of the resulting truncated protein. These results identify the transcriptional regulator Sox10 as an essential factor in mouse neural crest development and as a further candidate gene for human Hirschsprung disease, especially in cases where it is associated with features of Waardenburg syndrome.

Localization of the Wilsons disease protein product to mitochondria.


Year 1998
Lutsenko S. Cooper MJ.
Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, OR 97201, USA. lutsenko@ohsu.edu
Wilson's disease (WND) is an inherited disorder of copper homeostasis characterized by abnormal accumulation of copper in several tissues, particularly in the liver, brain, and kidney. The disease-associated gene encodes a copper-transporting P-type ATPase, the WND protein, the subcellular location of which could be regulated by copper. We demonstrate that the WND protein is present in cells in two forms, the 160-kDa and the 140-kDa products. The 160-kDa product was earlier shown to be targeted to trans-Golgi network. The 140-kDa product identified herein is located in mitochondria as evidenced by the immunofluorescent staining of HepG2 cells with specific mitochondria markers and polyclonal antibody directed against the C terminus of the WND molecule. The mitochondrial location for the 140-kDa WND product was confirmed by membrane fractionation and by analysis of purified human mitochondria. The antibody raised against a repetitive sequence in the N-terminal portion of the WND molecule detects an additional 16-kDa protein, suggesting that the 140-kDa product was formed after proteolytic cleavage of the full-length WND protein at the N terminus. Thus, the WND protein is a P-type ATPase with an unusual subcellular localization. The mitochondria targeting of the WND protein suggests its important role for copper-dependent processes taking place in this organelle.

p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells.


Year 1998
Archer SY. Meng S. Shei A. Hodin RA.
Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
A diet high in fiber is associated with a decreased incidence and growth of colon cancers. Butyrate, a four-carbon short-chain fatty acid product of fiber fermentation within the colon, appears to mediate these salutary effects. We sought to determine the molecular mechanism by which butyrate mediates growth inhibition of colonic cancer cells and thereby to elucidate the molecular link between a high-fiber diet and the arrest of colon carcinogenesis. We show that concomitant with growth arrest, butyrate induces p21 mRNA expression in an immediate-early fashion, through transactivation of a promoter cis-element(s) located within 1.4 kb of the transcriptional start site, independent of p53 binding. Studies using the specific histone hyperacetylating agent, trichostatin A, and histone deacetylase 1 indicate that growth arrest and p21 induction occur through a mechanism involving histone hyperacetylation. We show the critical importance of p21 in butyrate-mediated growth arrest by first confirming that stable overexpression of the p21 gene is able to cause growth arrest in the human colon carcinoma cell line, HT-29. Furthermore, using p21-deleted HCT116 human colon carcinoma cells, we provide convincing evidence that p21 is required for growth arrest to occur in response to histone hyperacetylation, but not for serum starvation nor postconfluent growth. Thus, p21 appears to be a critical effector of butyrate-induced growth arrest in colonic cancer cells, and may be an important molecular link between a high-fiber diet and the prevention of colon carcinogenesis.

Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma.


Year 1998
Herman JG. Umar A. Polyak K. Graff JR. Ahuja N. Issa JP. Markowitz S. Willson JK. Hamilton SR. Kinzler KW. Kane MF. Kolodner RD. Vogelstein B. Kunkel TA. Baylin SB.
The Johns Hopkins Oncology Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
Inactivation of the genes involved in DNA mismatch repair is associated with microsatellite instability (MSI) in colorectal cancer. We report that hypermethylation of the 5' CpG island of hMLH1 is found in the majority of sporadic primary colorectal cancers with MSI, and that this methylation was often, but not invariably, associated with loss of hMLH1 protein expression. Such methylation also occurred, but was less common, in MSI- tumors, as well as in MSI+ tumors with known mutations of a mismatch repair gene (MMR). No hypermethylation of hMSH2 was found. Hypermethylation of colorectal cancer cell lines with MSI also was frequently observed, and in such cases, reversal of the methylation with 5-aza-2'-deoxycytidine not only resulted in reexpression of hMLH1 protein, but also in restoration of the MMR capacity in MMR-deficient cell lines. Our results suggest that microsatellite instability in sporadic colorectal cancer often results from epigenetic inactivation of hMLH1 in association with DNA methylation.

Identification of novel susceptibility loci for inflammatory bowel disease on chromosomes 1p, 3q, and 4q: evidence for epistasis between 1p and IBD1.


Year 1998
Cho JH. Nicolae DL. Gold LH. Fields CT. LaBuda MC. Rohal PM. Pickles MR. Qin L. Fu Y. Mann JS. Kirschner BS. Jabs EW. Weber J. Hanauer SB. Bayless TM. Brant SR.
The Emma Getz Inflammatory Bowel Disease Research Center, Department of Medicine, The University of Chicago Hospitals, 5841 S. Maryland Avenue, MC6084, Chicago, IL 60637, USA.
The idiopathic inflammatory bowel diseases, Crohn's disease (CD) and ulcerative colitis (UC), are chronic, frequently disabling diseases of the intestines. Segregation analyses, twin concordance, and ethnic differences in familial risks have established that CD and UC are complex, non-Mendelian, related genetic disorders. We performed a genome-wide screen using 377 autosomal markers, on 297 CD, UC, or mixed relative pairs from 174 families, 37% Ashkenazim. We observed evidence for linkage at 3q for all families (multipoint logarithm of the odds score (MLod) = 2.29, P = 5.7 x 10(-4)), with greatest significance for non-Ashkenazim Caucasians (MLod = 3.39, P = 3.92 x 10(-5)), and at chromosome 1p (MLod = 2.65, P = 2.4 x 10(-4)) for all families. In a limited subset of mixed families (containing one member with CD and another with UC), evidence for linkage was observed on chromosome 4q (MLod = 2.76, P = 1.9 x 10(-4)), especially among Ashkenazim. There was confirmatory evidence for a CD locus, overlapping IBD1, in the pericentromeric region of chromosome 16 (MLod = 1.69, P = 2.6 x 10(-3)), particularly among Ashkenazim (MLod = 1.51, P = 7.8 x 10(-3)); however, positive MLod scores were observed over a very broad region of chromosome 16. Furthermore, evidence for epistasis between IBD1 and chromosome 1p was observed. Thirteen additional loci demonstrated nominal (MLod > 1.0, P < 0.016) evidence for linkage. This screen provides strong evidence that there are several major susceptibility loci contributing to the genetic risk for CD and UC.

Activation of NF-kappaB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells.


Year 1998
Li JD. Feng W. Gallup M. Kim JH. Gum J. Kim Y. Basbaum C.
Department of Anatomy, Program in Biomedical Sciences, and Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA.
Cystic fibrosis (CF) is an autosomal recessive disorder, the most common lethal genetic disease in Caucasians. Respiratory disease is the major cause of morbidity and mortality. Indeed, 95% of CF patients die of respiratory failure. Pseudomonas aeruginosa, an opportunistic pathogen, chronically infects the lungs of over 85% of CF patients. It is ineradicable by antibiotics and responsible for airway mucus overproduction that contributes to airway obstruction and death. The molecular mechanisms underlying this pathology are unknown. Here we show that P. aeruginosa activates a c-Src-Ras-MEK1/2-MAPK-pp90rsk signaling pathway that leads to activation of nuclear factor NF-kappaB (p65/p50). Activated NF-kappaB binds to a kappaB site in the 5'-flanking region of the MUC2 gene and activates MUC2 mucin transcription. These studies bring new insight into bacterial-epithelial interactions and more specifically into the molecular pathogenesis of cystic fibrosis. Understanding these signaling and gene regulatory mechanisms opens up new therapeutic targets for cystic fibrosis.

Isolation of a hepadnavirus from the woolly monkey, a New World primate.


Year 1998
Lanford RE. Chavez D. Brasky KM. Burns RB 3rd. Rico-Hesse R.
Departments of Virology and Immunology, Southwest Foundation for Biomedical Research, 7620 Northwest Loop 410, San Antonio, TX 78227, USA. rlanford@icarus.sfbr.org
Hepatitis B virus (HBV) infections are a major worldwide health problem with chronic infections leading to cirrhosis and liver cancer. Viruses related to human HBV have been isolated from birds and rodents, but despite efforts to find hepadnaviruses that infect species intermediate in evolution between rodents and humans, none have been described. We recently isolated a hepadnavirus from a woolly monkey (Lagothrix lagotricha) that was suffering from fulminant hepatitis. Phylogenetic analysis of the nucleotide sequences of the core and surface genes indicated that the virus was distinct from the human HBV family, and because it is basal (ancestral) to the human monophyletic group, it probably represents a progenitor of the human viruses. This virus was designated woolly monkey hepatitis B virus (WMHBV). Analysis of woolly monkey colonies at five zoos indicated that WMHBV infections occurred in most of the animals at the Louisville zoo but not at four other zoos in the United States. The host range of WMHBV was examined by inoculation of one chimpanzee and two black-handed spider monkeys (Ateles geoffroyi), the closest nonendangered relative of the woolly monkey. The data suggest that spider monkeys are susceptible to infection with WMHBV and that minimal replication was observed in a chimpanzee. Thus, we have isolated a hepadnavirus with a host intermediate between humans and rodents and establishes a new animal model for evaluation of antiviral therapies for treating HBV chronic infections.

Источник: https://gastroportal.ru/science-articles-of-world-periodical-eng/proc-natl-acad-sci-u-s-a.html
© ГастроПортал