ГастроПортал Гастроэнтерологический портал России

Am J Physiol

Protection against ethanol injury by prostaglandin in a human intestinal cell line: role of microtubules.


Banan A. Smith GS. Rieckenberg CL. Kokoska ER. Miller TA.
Theodore Cooper Surgical Research Institute, Department of Surgery, Saint Louis University Medical Center, Missouri 63104, USA.
Prostaglandins have been shown to protect the gastrointestinal (GI) epithelium from injury induced by various luminal insults independent of their known acid-inhibitory effects, a process termed "cytoprotection." The mechanism of this protective action remains unknown. The present investigation determined the role of microtubules (a major cytoskeletal component) in GI injury induced by ethanol (EtOH) and its prevention by 16,16-dimethylprostaglandin E2 (dmPGE2) using cells from a human colonic cell line known as Caco-2 cells. These cells were preincubated in Eagle's minimum essential medium with and without dmPGE2 (2.6 microM) for 15 min and subsequently incubated in media containing 1, 2.5, 5, 7.5, and 10% EtOH. The effects on cell viability and tubulin (the major protein backbone of microtubules) were then determined. EtOH concentrations > or = 2.5% extensively disrupted the microtubules as demonstrated by fragmentation, kinking, and perturbation of the microtubule organizer center. EtOH treatment also led to a significant decrease in the S2 (polymerized) fraction and an increase in the S1 (monomeric) pool of tubulin. Concomitant with these effects were marked decreases in cellular viability. DmPGE2 pretreatment abolished the disruption of microtubules, significantly increased the S2 fraction of tubulin, and increased cellular viability in cultures exposed to EtOH. Furthermore, pretreatment with colchicine, an inhibitor of microtubule assembly, prevented the cytoprotective action of dmPGE2. Taxol, a microtubule stabilizing agent, mimicked the effects of dmPGE2 by also enhancing microtubule integrity and increasing cellular viability in cells exposed to EtOH. Our data indicate that organization and stabilization of microtubules may play an essential role in the mechanism of prostaglandin-induced protection.

Effects of pacing parameters on entrainment of gastric slow waves in patients with gastroparesis.


Lin ZY. McCallum RW. Schirmer BD. Chen JD.
University of Virginia Health Science Center, Charlottesville 22908, USA.
The aim of this study was to investigate the effect of pacing parameters on the entrainment of gastric slow waves in patients with gastroparesis. Four pairs of cardiac pacing wires were placed on the serosal surface of the stomach in 13 patients with gastroparesis. After a baseline recording for 30 min, gastric pacing was performed in a number of sessions with different effective parameters, each lasting for 30 min. The following parameters were found to be effective for the entrainment of the gastric slow wave: a pacing frequency 10% higher than the intrinsic gastric slow wave frequency (IGF), 300 ms pulse width, and 4 mA pacing amplitude. A reduction of pacing amplitude from 4 to 2 mA and 1 mA reduced the percentage of entrainment of the gastric slow wave to 79 +/- 10% and 50 +/- 11%, respectively. Pacing with a pulse width of 30 or 3 ms was not able to entrain the gastric slow wave in any of the patients. An ectopic pacemaker of tachygastria found in three patients was reversed with gastric pacing. It was concluded that gastric pacing at a frequency up to 10% higher than the IGF and with an amplitude of 4 mA and a pulse width of 300 ms is able to completely entrain the gastric slow wave and normalize gastric dysrhythmias in patients with gastroparesis.

Current concepts in mucosal immunity. III. Ontogeny and function of gamma delta T cells in the intestine.


Year 1998
Kagnoff MF.
Department of Medicine, University of California at San Diego, La Jolla 92093, USA.
-gamma delta T cells are located in the paracellular space between epithelial cells. In the human colon and small intestine, 5-40% of intraepithelial lymphocytes (IEL) are gamma delta T cells, and in mice an even greater proportion of IEL are gamma delta T cells. The gamma delta T cell receptor repertoire in the human intestine undergoes marked changes in V region gene usage and junctional diversity during development from fetus to newborn to adult, suggesting that gamma delta T cells may mediate qualitatively or quantitatively different functions at various stages of development. gamma delta IEL have been shown to produce cytokines and growth factors and to influence epithelial cell proliferation and differentiation, as well as the mucosal development of immunoglobulin A B cells. gamma delta IEL also manifest cytolytic activity. However, the ligands recognized by intestinal gamma delta T cells and the role they play in intestinal immune responses, in immune defense to enteric pathogens, and in the pathogenesis of intestinal disease are thus far largely unknown.

Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis.


Year 1998
Mahler M. Bristol IJ. Leiter EH. Workman AE. Birkenmeier EH. Elson CO. Sundberg JP.
Jackson Laboratory, Bar Harbor, Maine 04609, USA.
Dextran sulfate sodium (DSS)-induced murine colitis represents an experimental model for human inflammatory bowel disease. The aim of this study was to screen various inbred strains of mice for genetically determined differences in susceptibility to DSS-induced colitis. Mice of strains C3H/HeJ, C3H/HeJBir, C57BL/6J, DBA/2J, NOD/LtJ, NOD/LtSz-Prkdc(scid)/Prkdc(scid), 129/SvPas, NON/LtJ, and NON.NOD-H2g7 were fed 3.5% DSS in drinking water for 5 days and necropsied 16 days later. Ceca and colons were scored for histological lesions based on severity, ulceration, hyperplasia, and area involved. Image analysis was used to quantitate the proportion of cecum ulcerated. Histological examination revealed significant differences among inbred strains for all parameters scored. In both cecum and colon, C3H/HeJ and a recently selected substrain, C3H/HeJBir, were highly DSS susceptible. NOD/LtJ, an autoimmune-prone strain, and NOD/LtSz-Prkdc(scid)/Prkdc(scid), a stock with multiple defects in innate and adoptive immunity, were also highly DSS susceptible. NON/LtJ, a strain closely related to NOD, was quite DSS resistant. The major histocompatibility (MHC) haplotype of NOD mice (H2g7), a major component of the NOD autoimmune susceptibility, was not crucial in determining DSS susceptibility, since NON mice congenic for this MHC haplotype retained resistance. C57BL/6J, 129/SvPas, and DBA/2J mice showed various degrees of susceptibility, depending upon the anatomical site. A greater male susceptibility to DSS-induced colonic but not cecal lesions was observed. In summary, this study demonstrates major differences in genetic susceptibility to DSS-induced colitis among inbred strains of mice. Knowledge of these strain differences in genetic responsiveness to acute inflammatory stress in the large intestine will permit design of genetic crosses to elucidate the genes involved.

Hepatic pyruvate dehydrogenase activity in humans: effect of cirrhosis, transplantation, and dichloroacetate.


Year 1998
Shangraw RE. Rabkin JM. Lopaschuk GD.
Department of Anesthesiology, Oregon Health Sciences University, Portland, USA.
The liver is the major site for lactate clearance, and liver disease exacerbates lactic acidosis during orthotopic liver transplantation (OLT). This study assessed pyruvate dehydrogenase (PDH) activity in control, cirrhotic, and graft liver to test the hypotheses that 1) liver disease decreases hepatic PDH activity, 2) graft PDH activity is inhibited due to protracted ischemia, and 3) dichloroacetate (DCA) reverses functional PDH inhibition in cirrhotic and graft liver. After having given their informed consent, 43 patients received either DCA (80 mg/kg) or aqueous 5% glucose during OLT. Six patients without apparent liver dysfunction that were undergoing subtotal hepatic resection served as controls. Liver biopsy PDH activity was assayed by measuring [14C]citrate synthesis from [14C]oxaloacetate and PDH-derived acetyl-CoA. PDH in the active form (PDHa) in cirrhotic and control liver was 5.6 +/- 1.3 (SE) and 57 +/- 10 nmol.g wet wt-1.min-1, respectively (P < 0.001). Total PDH activity (PDHt) was 21.5 +/- 3.6 and 264 +/- 27 nmol.g wet wt-1.min-1, respectively (P < 0.001). DCA increased PDHa in cirrhotic liver to 22.3 +/- 4.1 nmol.g wet wt-1.min-1 (P < 0.05 vs. no DCA) without altering PDHt. Graft liver PDHa was 166 +/- 19 nmol.g wet wt-1.min-1, which was not altered by DCA. We conclude that decreased hepatic PDH activity secondary to decreased content may underlie lactic acidosis during OLT, which can be partially compensated by DCA administration. There is no apparent inhibition of graft liver PDH activity after reperfusion.

The primary and final effector mechanisms required for kinin-induced epithelial chloride secretion.


Year 1998
Cuthbert AW. Huxley C.
Department of Pharmacology, University of Cambridge, United Kingdom.
The short-circuit current technique was used to examine the effects of N2-L-lysylbradykinin (LBK) on chloride secretion in the mucosae of the mouse intestine. It was found to be a potent chloride secretagogue in the mucosa lining the colon, jejunum, and cecum, as it is in most mammals, with 2 nM being sufficient to cause half-maximal secretion. The extent of the responses was in the order cecum > colon > jejunum. In cystic fibrosis (CF) null mice, with no CF transmembrane conductance regulator (CFTR) chloride channels, LBK caused no chloride secretion, but transporting activities for other ions were revealed. Introduction of the human CF gene into the genome of CF null mice at the zygote stage restored the chloride secretory activity of LBK, with only minor differences in potency. In mice in which the kinin B2 receptor gene had been disrupted, LBK had no effect, whereas the responses to forskolin were unchanged. Thus the acute effects of kinins on chloride secretion depend uniquely on kinin B2 receptors and CFTR chloride channels, which form the primary and final effector mechanisms of the secretory process.

Bioelectric properties of human cystic fibrosis and non-cystic fibrosis fetal tracheal xenografts in SCID mice.


Year 1998
Tirouvanziam R. Desternes M. Saari A. Puchelle E. Peault B. Chinet T.
Institut d'Embryologie Cellulaire et Moleculaire du Centre National de la Recherche Scientifique-Unite Propre de Recherche 9064, Nogent sur Marne, France.
We measured, the bioelectric properties of 14 cystic fibrosis (CF) and 33 non-CF human fetal tracheal xenografts in severe combined immunodeficiency (SCID) mice. All xenografts exhibited a mature airway-type epithelium irrespective of their gestational age, duration of engraftment, and genotype. The in vivo potential difference and the in vitro baseline short-circuit current (Isc) were significantly higher in non-CF than in CF xenografts. In non-CF xenografts, sequential addition of amiloride, forskolin, and ATP resulted in a 39.4% decrease, a 24.1% increase, and a 43.6% increase in Isc, respectively. In CF xenografts, forskolin had no significant effect on Isc, whereas amiloride- and ATP-induced changes in Isc were proportionally higher than in non-CF xenografts (-60.0 and +68.8%, respectively). These results indicate that the bioelectric properties of non-CF xenografts are similar to those of postnatal airways and that CF xenografts exhibit lower baseline electrogenic activity than non-CF xenografts but similar regulation of ion transport processes to postnatal CF airways. This model of mature human fetal tracheal mucosa may help gain insight into early CF airway pathogenesis.

Источник: https://gastroportal.ru/science-articles-of-world-periodical-eng/am-j-physiol.html
© ГастроПортал